Applicability of Building Energy Codes in Emerging Asian Countries: The case of China

Second “Policy Meets Research” Workshop
Sustainable Housing
Helsinki, March 2012

Lewis Akenji, Fellow
Fei Guo, Research Associate

Institute for Global Environmental Strategies (IGES), Japan
IGES
IGES energy efficient building projects
Objectives

- Understand **drivers, trends** in EEH, and review existing policies and opportunities;

- Identify **systemic and infrastructural barriers** to stakeholder participation;

- Provide **policy recommendations** for governments and agencies engaged in the sector on how to remove these barriers and how to provide incentives towards sustainable EEH;
stakeholder analysis

Macro factors

Economy, geography, demography, technology, etc

Triple I

Interest, influence, Instruments

Actor

Impacts

Environmental, Social, Economic

Akenji and Bengtsson, 2009
IGES framework: SCP and sustainable housing

- Education
- Lifestyles
- Agency
- Labelling systems

Values, Knowledge

- Right stakeholder attitude

Facilitating System
(cultural, legal, administrative…)

Incentives, Constrains

- Building codes
 - Regulation
- Standards
 - Economic
- Incentives

Appropriate Infrastructure

Bldgs, appliances, Services

- Sustainable buildings
 - Appliances use
 - Energy carriers

Akenji, 2010
Preconditions for SCP (e.g. housing)

<table>
<thead>
<tr>
<th>Key condition</th>
<th>(Other related details)</th>
<th>Facilitators/determinants</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right stakeholder attitude</td>
<td>(mindware – relates to individual and personal aspects) Stakeholders: individuals (as citizens and actors in various sectors – e.g. business leaders)</td>
<td>Education Lifestyles Agency</td>
<td>Values Knowledge</td>
</tr>
</tbody>
</table>
● Scope
 ● urban, residential buildings

● Focus countries:
 ● China (Beijing, Xiamen)
 ● India (Delhi and Bangalore)

● Control countries
 ● Indonesia
 ● Thailand

● Activities
 ● Reviews
 ● Surveys/Interviews
 ● Facilitated Workshops
 ● Pilot projects
China and building energy consumption - the big picture
China’s Economy in Comparison with some others

<table>
<thead>
<tr>
<th>Countries</th>
<th>China</th>
<th>India</th>
<th>Japan</th>
<th>US</th>
<th>EU-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>100</td>
<td>87.5</td>
<td>9.5</td>
<td>23.1</td>
<td>37.5</td>
</tr>
<tr>
<td>Land Area</td>
<td>100</td>
<td>31.9</td>
<td>3.9</td>
<td>98.1</td>
<td>46.4</td>
</tr>
<tr>
<td>Population Density</td>
<td>100</td>
<td>244.5</td>
<td>243.7</td>
<td>23.5</td>
<td>80.9</td>
</tr>
<tr>
<td>GDP (current US$)</td>
<td>100</td>
<td>29.1</td>
<td>92.1</td>
<td>246.1</td>
<td>273.7</td>
</tr>
<tr>
<td>GDP per capita (current US$)</td>
<td>100</td>
<td>33.3</td>
<td>967.3</td>
<td>1065.9</td>
<td>729.7</td>
</tr>
<tr>
<td>Urban population (%)</td>
<td>45%</td>
<td>30%</td>
<td>67%</td>
<td>82%</td>
<td>74%</td>
</tr>
</tbody>
</table>

Data Source: Calculated based on the Data of World Bank 2010

- In 2010, China became the second biggest economy in the world, just behind the US. And its GDP (5.93 Trillion US$) in 2010 is about **37% of that of EU-27**;

- However, China’s per capita GDP is still very low (4428 US$), around 1/10 of that of US and Japan, and around **1/7 of that of EU-27**;

- Although China is undergoing rapid urbanization, however, China’s urban population share is **only 45%**, compared to 82% in the US and 74% in the EU-27;
China’s Energy Consumption in 2009

<table>
<thead>
<tr>
<th>Countries</th>
<th>World</th>
<th>China</th>
<th>India</th>
<th>Japan</th>
<th>US</th>
<th>EU-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPES (Mtoe)</td>
<td>12150</td>
<td>2257</td>
<td>676</td>
<td>472</td>
<td>2163</td>
<td>1656</td>
</tr>
<tr>
<td>Net Imports/ TPES</td>
<td>0%</td>
<td>12%</td>
<td>27%</td>
<td>81%</td>
<td>26%</td>
<td>57%</td>
</tr>
<tr>
<td>Electricity Consumption (EC) (TWh)</td>
<td>18451</td>
<td>3503</td>
<td>689</td>
<td>997</td>
<td>3961</td>
<td>3037</td>
</tr>
<tr>
<td>CO₂ Emission (Mt)</td>
<td>28999</td>
<td>6831</td>
<td>1586</td>
<td>1093</td>
<td>5195</td>
<td>3577</td>
</tr>
<tr>
<td>TPES/ population (toe/capita)</td>
<td>1.80</td>
<td>1.70</td>
<td>0.58</td>
<td>3.71</td>
<td>7.03</td>
<td>3.31</td>
</tr>
<tr>
<td>EC/population (kWh/capita)</td>
<td>2729</td>
<td>2631</td>
<td>597</td>
<td>7833</td>
<td>12884</td>
<td>6070</td>
</tr>
<tr>
<td>CO₂ Emission/population (t CO/capita)</td>
<td>4.29</td>
<td>5.13</td>
<td>1.37</td>
<td>8.58</td>
<td>16.90</td>
<td>7.15</td>
</tr>
<tr>
<td>TPES/GDP (toe/ thousand 2000 US$)</td>
<td>0.31</td>
<td>0.77</td>
<td>0.77</td>
<td>0.10</td>
<td>0.19</td>
<td>0.17</td>
</tr>
</tbody>
</table>

- China is the biggest energy consumption country (18.6% of global total) and the biggest GHGs emitter (23.6%) - 2009;

- However, per capita TPES (1.7 toe/capita) is still below world average - around ¼ of US, and ½ of that in the EU-27;

- Per capita electricity consumption is around 1/5 of US, and 43% of EU-27;

- high energy intensity (EI) of 0.77 - about 8 times of Japan’s, 4 times of US’ and 4.5 times of the EU-27’s;

Source: IEA 2009
% Energy Consumption by Sectors

<table>
<thead>
<tr>
<th>Sector Share</th>
<th>China</th>
<th>US</th>
<th>Japan</th>
<th>Germ’y</th>
<th>France</th>
<th>UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building</td>
<td>28.3</td>
<td>32.0</td>
<td>35.5</td>
<td>42.4</td>
<td>40.7</td>
<td>41.0</td>
</tr>
<tr>
<td>Industry</td>
<td>47.4</td>
<td>17.7</td>
<td>26.2</td>
<td>21.4</td>
<td>17.2</td>
<td>19.5</td>
</tr>
<tr>
<td>Transportation</td>
<td>11.2</td>
<td>39.5</td>
<td>24.3</td>
<td>24.1</td>
<td>27.7</td>
<td>31.6</td>
</tr>
<tr>
<td>Others</td>
<td>13.1</td>
<td>10.8</td>
<td>14.0</td>
<td>12.1</td>
<td>14.4</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Source: based on the Data of IEA 2009

- Building sector is the biggest energy consumer in many developed countries
- In 2009, China’s total building energy consumption (405 Mtoe), was bigger than total energy consumption of Germany and France
New, demanding buildings

- In 2009, newly constructed buildings had a total area of 2. billion m²;

- From 2001 to 2009, the average growth rate of new constructed building areas is 12.2% yearly;

![Graph showing the total building stock of China's urban residential sector from 1996 to 2007.](image)

![Graph showing the building energy increase from 1996 to 2006.](image)
Structure of China’s Energy Consumption (2009)

- coal: 70.40%
- oil: 17.90%
- gas: 3.90%
- electricity (nuclear, hydro, wind): 7.80%

Decoupling Challenge

China's GDP and TEC Growth (2000-2008)

- 10.5% GDP yearly growth;
- vs
- TEC 11.6% yearly growth

expect more...

Per capita energy use in res. & comm. Bldgs
Building Energy Codes in China
Quick code facts…

- 1 design standard for public buildings
- 3 “design standards” for residential buildings
- Cover building envelope and HVAC
- (Separate standard for lighting design)
- Two options for compliance:
 - Prescriptive path (specifications for building components)
 - Performance path (energy consumption benchmarked to reference building)
- Prioritization:
 - Residential > public buildings
 - Northern > Southern area
 - New > existing bldgs
China’s Climate Zones for Buildings

Cold & Severe Cold:
- .550 million people,
- .43% of urban res. & comm. bldgs

HSCW:
- .500 million people in,
- .42% of urban res. & comm. bldgs

HSWW:
- .160 million people
- .12% of urban res. & comm. bldgs
Criteria of China’s Building Climate Zones

<table>
<thead>
<tr>
<th>Zone Name</th>
<th>Criteria</th>
<th>Requirements for Building Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sever Cold</td>
<td>Average temperature of coldest month ≤-10°C</td>
<td>Design for heating is a must; Design for cooling not required</td>
</tr>
<tr>
<td></td>
<td>Days of averagely daily temperature ≤5°C: ≥145 days</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>Average temperature of coldest month 0~10°C</td>
<td>Design for heating is a must; Design for cooling can be required in some areas</td>
</tr>
<tr>
<td></td>
<td>Days of averagely daily temperature ≤5°C: 90~145 days</td>
<td></td>
</tr>
<tr>
<td>Hot Summer and Cold Winter</td>
<td>Average temperature of coldest month 010°C; Average temperature of hottest month 2530°C</td>
<td>Design for cooling is a must; Design for heating can be required</td>
</tr>
<tr>
<td></td>
<td>Days of averagely daily temperature ≤5°C: 090 days; Days of averagely daily temperature ≥25°C: 40110 days;</td>
<td></td>
</tr>
<tr>
<td>Hot Summer and Warm Winter</td>
<td>Average temperature of coldest month >10°C; Average temperature of hottest month 25~30°C</td>
<td>Design for cooling is a must; Design for heating not required</td>
</tr>
<tr>
<td></td>
<td>Days of averagely daily temperature ≥25°C: 100~200 days;</td>
<td></td>
</tr>
<tr>
<td>Temperate</td>
<td>Average temperature of coldest month 013°C; Average temperature of hottest month 1825°C</td>
<td>Design for heating should be required in some areas; Design for cooling not required</td>
</tr>
</tbody>
</table>
Progress of Building Energy Code in China (national level)

- **Residential Buildings:**
 - **For Northern Area:**

 - **For HSCW Area:**

 (2001 Code-Phase 2 Code:50%; 2001 Code-Phase 3 Code:65%)

 - **For HSWW Area:**

 (2003 Code-Phase 2 Code:50%)

- **Commercial Buildings:**

- **Long national code revision cycles (about 10 years);**
- **Provinces can issue own codes, but must be stricter than current national code;**
- **Beijing will issue its new code in 2012 Code (75% energy saving than 1980 level)**
e.g.: National 2010 Northern code vs. Beijing 2012 Code

<table>
<thead>
<tr>
<th>Building Envelope</th>
<th>National Energy Code for Cold Area</th>
<th>Beijing Energy Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
<td>2006</td>
</tr>
<tr>
<td>Exterior Walls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 3 stories</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>4~8 stories</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>≥ 9 stories</td>
<td>0.70</td>
<td>0.60</td>
</tr>
<tr>
<td>Roofs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 3 stories</td>
<td>0.35</td>
<td>0.45</td>
</tr>
<tr>
<td>4~8 stories</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td>≥ 9 stories</td>
<td>0.45</td>
<td>0.60</td>
</tr>
<tr>
<td>Windows (WWR<0.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 3 stories</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>4~8 stories</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>≥ 9 stories</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Windows (WWR≥0.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 3 stories</td>
<td>1.8</td>
<td>2.8</td>
</tr>
<tr>
<td>4~8 stories</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>≥ 9 stories</td>
<td>2.3</td>
<td>2.8</td>
</tr>
</tbody>
</table>

2) 2012 code has not been issued yet, the related data are from the draft;
3) Beijing 2006 code has a different sorting for building envelope, but for convenience a little change is made here;

Beijing’s 2012 Code is stricter than national 2010 code on all the envelope performance (K value of windows, from 2.8 to 2.0);
Procedure
Key code enforcement steps in Chinese building Construction

Source: US DOE 2010
Construction site inspection roles

- **Construction Company**
 - Quality control system

- **Construction Supervision Company**
 - Checks work on site; orders tests; prepares documentation on compliance

- **Testing Labs**
 - Tests components from construction site

- **Quality Control and Testing Station**
 - Collects and reviews documentation; conducts periodic site inspections; prepares completion report

- **Developer**
 - Takes completion report to construction administration dept.

- **Construction Administration Dept.**
 - Accepts and files documents and issues occupancy permit

Source: US DOE 2010
Analysis
Implementation Effectiveness of Building Code

Administration:
- Ministry of Housing and Urban-Rural Development of China (MOHURD)
- Construction Commission in each province
- Construction Bureau in each city and county

Survey Results:

2000 MOHURD Survey in Northern Areas:
Share of Energy Efficiency Buildings in Urban areas: 2.3%;

2005 MOHURD Survey in whole country:
Shares of buildings meeting the in-place codes in Urban areas:
57.7% in design phase/ 23.8% in construction phase;

2009 MOHURD Survey in whole country:
Shares of buildings meeting the in-place codes in Urban areas:
99% in design phase/ 90% in construction phase;

(Data source: Center of Science and Technology of MOHURD)
Government efforts for improvement

- More Trainings held for engineers from design, construction, supervising and quality check companies or agents;

- More demo buildings built in cities across Chinese cities;

- More local implementation and regulatory details to explain to stakeholders at local level;
Challenges

- Weak monitoring mechanism
 - Limited expertise, funds, etc
 - Rapid new construction rate
- Hierarchical, unclear, overlapping structure of responsibilities
 - Complex construction process
 - Gap between design and implementation
- Legal enforcement of penalties
 - Hardly any penalties given
 - Inadequate training for judges
 - Corruption
- No enforcement in smaller towns and rural areas
- Unreliability of test lab results
 - No rigorous certification requirements
 - Low costs of tests
 - Faulty equipment
- Software difficulties
 - Inconsistent results
 - User errors from complexity
- Ineffectiveness
 - Public distrust in eco-labels
 - Rebound effects of increasing consumption
Challenges to Stakeholders in Building Sector of China

• Lack of reliable information on building energy performance in the building market for buyers;

• Lack of enough financing source and mechanism to support the retrofitting of huge stock of existing buildings;

• Lack of initiatives from local governments, particularly at the level of city governments;

• Weak economic (tax) incentives for building developers to build energy efficient buildings;

• Short-term view - for architects and engineers home owners
Thank you

Lewis Akenji
akenji@iges.or.jp
Building Energy Code Progress in Beijing

<table>
<thead>
<tr>
<th></th>
<th>Average Heating Load during Heating Season (building end)</th>
<th>Efficiency of District Heating Systems</th>
<th>Average Heating Load during Heating Season (fuel end)</th>
<th>Energy Saving Control Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(w/m²)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>Benchmark (1980 average level)</td>
<td>31.7</td>
<td>55</td>
<td>85</td>
<td>46.8</td>
</tr>
<tr>
<td>1988 Code</td>
<td>25.3</td>
<td>60</td>
<td>90</td>
<td>54.0</td>
</tr>
<tr>
<td>1997 Code</td>
<td>20.6</td>
<td>68</td>
<td>90</td>
<td>61.2</td>
</tr>
<tr>
<td>2006 Code</td>
<td>14.5</td>
<td>68</td>
<td>90</td>
<td>61.2</td>
</tr>
<tr>
<td>2012 Code*</td>
<td>10.5</td>
<td>68</td>
<td>93</td>
<td>63.2</td>
</tr>
</tbody>
</table>

Note: 1) 1988 Code (DBJ01-4-88); 1997 code (DBJ01-602-97); 2006 code(DBJ11-602-2006); 2012 code (DBJ11-602-2012); 2) 2012 code has not been issued yet, the related data are from the draft in November 2011; 3) The benchmark was based on the energy consumption of reference building, “80住2-4”, which is a 6-storey and 4 units residential buildings with a shape factor of 0.28;

- The 1988 code was designed to save 30% energy from the benchmark; 1997 code - 50% saving; 2006 code - 65% saving; the up-coming 2012 code – 75% saving;

- On the building end, the savings potential is around 20% for 1988 code; 35% for 1997 code; 55% for 2006 code; 65% for 2012 code;
Future Plan for Energy Efficient Buildings in China

- Setting up energy management system for government buildings and large-scale public buildings (>20,000 sq. meters), including energy consumption statistics, energy audit and dynamic monitoring for some designated buildings;

- Setting up the system of building energy performance labeling and public display;

- Setting up the system of Energy Saving Performance Contract (ESPC) and fostering Energy Service Company (ESCO) industry;

- Requiring each sub-national government to include building energy conservation into their goal of local EI decrease;

- Issuing mandatory green building criteria in some developed areas of China;

- Strengthening the R&D in new and high-performance building envelope materials;

- Promoting the integrated application of renewable energy in buildings, like PV, solar thermal for urban buildings and biogas for rural buildings;

(Data source: Center of Science and Technology of MOHURD)