Portfolio Analysis for Investment on Ecosystem Restoration

Kei Kabaya
Institute for Global Environmental Strategies (IGES)
Investment on Ecosystem and Modern Portfolio Theory

Investment on ecosystem restoration

Current status of ecosystem degradation (Millennium Ecosystem Assessment, 2005)
- e.g. 20% of global coral reef disappeared during the last few decades

Ecosystem degradation implies the loss of natural assets
- Investment on natural capital for conservation or restoration attracts global attention

Modern portfolio theory

Theory of investment allocation for better expected return and lower risk

Efficient frontier:
- collection of portfolios for the lowest risk for a given level of expected return or vice versa

Capital allocation line (CAL):
- possible combination of risky and risk-free assets
 → its slope represents the Sharpe ratio; measure of the excess return per unit of risk

Market portfolio:
- portfolio of risky assets for highest Sharpe ratio
Simulation Scenario & Data

Simulation scenario

Investment on restoration projects for the following 7 ecosystems
- Funding resource may come from the global fund, domestic public investment or private stocks

Investigation of the market portfolio and prioritization from the economic viewpoint
- Implication for local policies and business

Simulation data

<table>
<thead>
<tr>
<th></th>
<th>Coral reef</th>
<th>Coastal</th>
<th>Inland wetland</th>
<th>Freshwater</th>
<th>Tropical forest</th>
<th>Temperate forest</th>
<th>Grassland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. value (US$/ha/yr)</td>
<td>14</td>
<td>248</td>
<td>981</td>
<td>1,779</td>
<td>91</td>
<td>30</td>
<td>297</td>
</tr>
<tr>
<td>Max. value (US$/ha/yr)</td>
<td>1,195,478</td>
<td>79,580</td>
<td>44,597</td>
<td>13,488</td>
<td>23,222</td>
<td>4,863</td>
<td>3,091</td>
</tr>
<tr>
<td>Min. restoration cost (US$/ha)</td>
<td>452,083</td>
<td>193,917</td>
<td>11,371</td>
<td>3,333</td>
<td>1,032</td>
<td>566</td>
<td>143</td>
</tr>
<tr>
<td>Max. restoration cost (US$/ha)</td>
<td>15,949,758</td>
<td>431,563</td>
<td>33,944</td>
<td>188,497</td>
<td>22,213</td>
<td>3,190</td>
<td>1,377</td>
</tr>
<tr>
<td>Annual average return (%)</td>
<td>-2.98</td>
<td>-2.70</td>
<td>2.64</td>
<td>-2.95</td>
<td>2.88</td>
<td>3.32</td>
<td>5.15</td>
</tr>
<tr>
<td>Standard deviation (%)</td>
<td>2.95</td>
<td>2.23</td>
<td>2.10</td>
<td>2.31</td>
<td>2.93</td>
<td>2.57</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Value and cost data come from the TEEB D0 Appendix C + Climate Issues Update at the global level
Simulation Results

Maximum Sharpe ratio: 2.373

Sensitivity analysis

<Market portfolio>
- Coral reef: 0%
- Coastal: 0%
- Inland wetland: 20%
- Freshwater: 0%
- Tropical forest: 10%
- Temperate forest: 20%
- Grassland: 50%
Implication for local policy and business

Implication for local policy

• Some ecosystems (coral reefs, coastal area, and freshwater) may not be covered by the market portfolio due to their low expected return
 → Local governments may need to support or complement ecosystem restoration through public investment

• Firmly established economic valuation of ecosystem services will lower the risk of portfolio, subsequently achieve better Sharpe ratio
 → Local specific valuation may contribute to attract private investment on local ecosystem restoration

Implication for business

• Investment on ecosystem restoration will be economically efficient once the economic value of ecosystem services are recognized within the market

• Investment priority for inland wetland, tropical forest, temperate forest and grassland will be comparatively high from the economic viewpoint

• Some financial derivatives relevant to ecosystem restoration can be developed on condition of further valuation and analysis

• A new financial mechanism such as GDM may consider the possibility of portfolio (e.g. GDM portfolio)
Thank you for your attention