Pilot cases on standardized Baseline

Biomass Gasification in Cambodia

Akiko Fukui
Market Mechanism Group
Institute for Global Environmental Strategies
Low electricity access rate
High carbon intensity energy source

Electrification rate in Cambodia: 24% (IEA)
80.5% of population live in rural area, where electrification rate is much lower

Most of industrial plants including rice millers have an in-house generation system using diesel

Electricity source in grid system

Source: Electricity Authority of Cambodia

Potential of rice husk utilization as biomass fuel

- Gasification with rice husk reduces 60-75% of diesel consumption
- 6 kg of rice husk is equivalent to 1L of diesel
- Some portion of rice husk is used as fuel for heating, other is decayed.
- Government promotes to increase milled rice for export.

Source: Ministry of Agriculture, Floristries and Fishery
Source: The Supreme National Economic Council
Steps for establishing standardized baseline

Step 1: Identify host countries, sectors, outputs and measures

Host Country: Cambodia
(Potential level of aggregation: countries in same conditions)

Sector: Rice milling factory
(garment factory, and ice factory, etc.)

Measure: Switch of technology with change of energy source

Technology: Generating power by gasification of biomass (e.g. rice husk) replaced with diesel

Step 2: Establish additionality criteria for the identified measures

Step 3: Identify the baseline for the measures

Power source in rice milling factory (Assumption)

Rice millers in Cambodia: about 27,000
Rice millers applying gasification with rice husk: 48

Source: Ministry of Environment of Cambodia, NEDO and SME renewable energy Ltd.

<table>
<thead>
<tr>
<th>Source of Power</th>
<th>T1 Supply from mini-grid</th>
<th>T2 Captive plant with diesel</th>
<th>T3 Supply from Phnom penh grid</th>
<th>T4 Gasification with biomass</th>
<th>T5 Other renewable energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 emission factors</td>
<td></td>
<td>x</td>
<td>0.66</td>
<td>y</td>
<td>0</td>
</tr>
<tr>
<td>(t-CO2/MWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of rice milled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A % | B % | C % | D % | E %
0% | | | | 100%
Additionality demonstration

- No regulation: mandating use of the activities

- Financial barrier: Large initial equipment cost

- Technology barrier: Lack of experts & service providers

- Common practice: Low prevailing rate of the technology

Exemption from demonstrating additionality
- Projects up to 5 MW that employ renewable energy technology
- The geographic location of the project in one of LDCs/SIDs

Step 4: Determine the baseline emission factor

\[
\text{Emission Reductions} = \text{Baseline Emissions} - \text{Project Emissions} - \text{Leakage}
\]

0 t-CO2

0 t-CO2

Option 1.

\[
\text{BE}_y = \text{EG}_{BL,y} \times \text{EF}_{EG,y}
\]

Quantity of net electricity displaced

Option 2.

\[
\text{BE}_y = \text{FC}_{BL,y} \times \text{EF}_{FC,y}
\]

Quantity of diesel consumption for displaced electricity generation

Option 3.

\[
\text{BE}_y = \text{MR}_y \times \text{EF}_{MR,y}
\]

Quantity of milled rice production
Benefit

- Standardized baseline can be applied for other type of small scale factories (e.g. garment, ice making, etc) as well as in other country having similar conditions

Issues

- How much accurate data is required?
 - Survey is based on hearing plant owners who are SME and don’t have their record.
 - How many sample is required to determine baseline / additional level