Local initiatives towards zero waste in developing countries: Learning from Phitsanulok Municipality, Thailand

Janya Sang-Arun
Policy researcher
Sustainable Consumption and Production Group
Institute for Global Environmental Strategies (IGES)

IGES-SCP
Phitsanulok zero waste model

Geographical location
Overview of municipal solid waste management in Thailand

- Thailand has about 67 million people
- Waste generation is 16 million tonnes/year
- Waste composition is 64% organic waste, 30% recyclables, 3% hazardous waste, and 3% others
- 80% of waste is collected
- Only 35% of generated waste is properly disposed
- 26% of waste was recycled and recovery (as of 2011)

Source: PCD 2012
Driving force of the zero waste policy in Phitsanulok Municipality

- Rapid increase of waste generation (1.5 kg/person/day)
- The municipality changed open dumping sites very often and each time the distance from the town to dumping site is further
- Increase social resistant from local community on disposal sites
- Land price is increasing

Improvement of municipal solid waste management toward zero waste landfill

- Started in 1997 with support from GIZ (Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH)
- Introducing the 3Rs (reduce, reuse, recycle)
- Introducing community based waste management and public participation
- Introducing polluter pay principle
- Promoting household and community composting
- Promoting recycling business
- Applying mechanical biological treatment (MBT) prior to sanitary landfill
- Converting plastic to oil (not fully operated yet)
- Aimed for zero waste landfill since 2007
Phitsanulok Model on municipal solid waste

Household waste

- Saleable Materials
 - Sell by residents
- Organic Waste
 - Household composting
- Hazardous Waste
 - Storage
- Infected Waste
 - Incineration by hospital
- Waste to be Disposal
 - Mechanical biological treatment (MBT)

Community Base Solid Waste Management (CBM)

Disposed by Private

Screening

- Daily cover
- Refuse Derived Fuel

Source: Phitsanulok Municipality

Implementation

- Based on a voluntary basis
- Reducing use of plastic bag by using reusable containers for shopping and carrying food
- Campaign to encourage residents separate recyclables for sale
- Collaborating with waste buyers
- Promoting household organic waste composting
- Implementing a mechanical-biological treatment (MBT) and segregation of plastic from MBT for pyrolysis (liquid fuel-diesel, gasoline)
Examples of awareness raising campaign and training on community based waste management

Promoting recycling business

- Involvement of waste buyers since the beginning of project development process.
- Active interaction with residents (e.g. door knocking program) and other stakeholders.
- Involvement of educational institutes (schools, university).
- Continuous awareness raising and follow-up activities.
- Facilitating the mechanism of waste separation for sale and regulating the environmental and health impacts, without interfering with the business mechanism.
- Introduction of waste bank program
- Free market competition = many waste buyers.
Participatory recycling business model in Phitsanulok, Thailand

Municipality:
Initiator, Motivator, Facilitator, Regulator and Inspector

Waste buyers and sorting facility:
Active recyclable waste collectors, waste buyers and waste circulators

Motivate and encourage residents on recyclable waste separation for sale

Train waste pickers and itinerant waste buyers on environment, health, waste sorting techniques, etc

Residents
- Operate waste banks
- Join waste market events
- Sell household waste

Waste pickers and buyers
- Act as volunteers for environments
- Buy recyclables and sell sorting materials to recyclers

Common flows of recyclable waste under free market conditions in Phitsanulok Municipality

- Residents
- Waste banks
- Community
- Schools
- Students
- Waste pickers in town
- Itinerant waste buyers
- Junkshops
- Waste sorting and dismantling facility (private)
- Recyclers (private)

Main flow: Waste pickers in town → Itinerant waste buyers → Junkshops → Waste sorting and dismantling facility (private) → Recyclers (private)

Other flow: Students → Waste banks → Schools → Waste pickers at dumpsite → Waste collection crews → Recyclers (private)
Benefits of sustainable recycling business

- Reduce waste for disposal
- Reduce environmental impact
- Extend lifetime of landfill
- Reduce budget for WM
- Get more WM fee from residents

Benefits for all

- Reduce waste for disposal
- Reduce environmental impact
- Extend lifetime of landfill
- Reduce budget for WM
- Get more WM fee from residents

Municipality

- Earn more from larger quantity and variety of sellable waste
- Expand to international market

Waste sorting facility

- Earn more from larger quantity and variety of sellable waste

Junkshops

- Work in better conditions
- Earn more from larger quantity and variety of sellable waste

Residents

- Earn from selling waste
- Can pay waste fee to municipality

Waste pickers

- Work in better conditions (health and social status)
- Upgrade to itinerant waste buyers

Itinerant waste buyers

- Earn from selling waste
- Can pay waste fee to municipality

Benefits of sustainable recycling business

Sustainable organic waste management: household and community composting
Changes in MSW to landfill site after introducing the 3Rs in Phitsanulok, Thailand

- Waste to be collected was decreased from 1.5 kg/person/day to 0.9 kg/person/day
- Reducing frequency of waste collection from a daily basis to every two days
- Reducing cost for waste collection and disposal (210,000 USD/year)
Phitsanulok zero waste model

Mechanical - Biological Waste Treatment prior to sanitary landfill

Area: 35.2 hectares

- Homogenizing and forming the pile
- Passive composting for 9 months
- Compost like product
- Plastic

Conversion of plastic to oil

Refuse Derived Fuel: RDF

Pyrolysis

Source: Phitsanulok Municipality
Achievement of zero waste target

Before 3R implementation: 142 ton/day of waste for landfill (100%)

3R implementation:

- 46.5% waste reduction by reducing use of plastic bag, use reusable packaging, selling recyclable wastes, composting, etc.

76 ton/day of waste for collection by municipality (53.5%)

100% MBT ➔ 64% reduction

27.4 ton/day of inert waste (19.3%)

2.6% MBT cover ➔ 11.6% Pyrolysis ➔ 5.1% landfill

Reduction of GHG emissions (Lifecycle approach)

→ 78 t/d of waste
→ 87% emission reduction (LCA), or
→ 84% emission reduction on the waste sector (avoided landfill)

GHG emissions (tCO2eq/yr):

- Transportation
- Operation Integration
- MBT
- Pyrolysis
- Conventional sanitary landfill

Baseline ➔ Integration ➔ MBT ➔ Pyrolysis ➔ Sanitary landfill

-54% reduction
GHG emissions from material recycling (rough estimation)

<table>
<thead>
<tr>
<th>Recyclables</th>
<th>Weight (t/d)</th>
<th>GHG emissions per tonne (tCO₂eq)</th>
<th>Total emissions (tCO₂eq/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>8.7</td>
<td>-2.08</td>
<td>-18.0</td>
</tr>
<tr>
<td>Plastic</td>
<td>5.4</td>
<td>0.25</td>
<td>1.4</td>
</tr>
<tr>
<td>Aluminium</td>
<td>1.4</td>
<td>-12.08</td>
<td>-17.4</td>
</tr>
<tr>
<td>Steel</td>
<td>5.0</td>
<td>-1.85</td>
<td>-9.3</td>
</tr>
<tr>
<td>Glass</td>
<td>15.5</td>
<td>-0.46</td>
<td>-7.1</td>
</tr>
<tr>
<td>Net</td>
<td>36</td>
<td></td>
<td>-50.5</td>
</tr>
</tbody>
</table>

Phitsanulok Municipality contributes to avoidance 50.5 tCO₂eq/day when compare with non-recycling

If this emission is included, the Municipality can achieve zero GHG emissions (LCA).

Note: Suchada et al., (2003), approximate composition of collected recyclables by various participants in the municipality is 24% paper, 15% plastic, 43% glass, 4% aluminum and 14% steel.

Conclusion

- Phitsanulok Municipality has gradually achieved the zero waste target through the 3Rs implementation, polluter pay principle, public participation, pre-treatment prior to landfill and pyrolysis
- The remaining waste to landfill is approximately 5%
- Phitsanulok Municipality may need advance technology such as incineration and ash recycling to achieve zero waste landfill, however this technology is too expensive for developing countries.