Policy Instruments to Promote Sustainable Agriculture

SVRK Prabhakar
IGES, Hayama, Japan

OUTLINE

• Typology of policy instruments
• Detailed discussion on specific instruments
 • Subsidies
 • Insurance
 • Carbon sequestration, removing access barriers etc.
 • Metrics based incentivization
 • Certification
• Conclusion
INSTRUMENTS FOR PROMOTING SUSTAINABLE AGRICULTURE

- Product certification
- Agricultural insurance
- Subsidies
- Labelling and logos
- Payment of ecosystem services
- Carbon sequestration, trading & credits
- Taxation and exemptions
- Removal of perverse incentives
- Cash transfers

- Regulations, guidelines and controls
- Positive policy support (programmatic and donor driven funding)
- Information provision
- Removal of barriers (e.g. to market access)
- Access to capital
- Ensure open and competitive markets
- Land tenure related policies
- Indicator based metrics

MAJOR AGRICULTURAL SUBSIDIES

Subsidies

Direct subsidies
- Market Price Support
- Insurance premium
- Agriculture taxation (lack of)

Indirect subsidies
- Energy
- Water
- Fertilizers
Agricultural Subsidies

Regional distribution of agriculture subsidies (World Watch Institute and OECD)

Decline in total support for agriculture in OECD countries

Subsidy Situation in Asian-OECD Countries

- Developed countries in Asia have continuously reduced the producer and other forms of support.
- Developing countries continue to increase support for agriculture while Vietnam case can provide an example (as a result of Doi Moi reforms?)
SUBSIDIES FOR SUSTAINABLE AGRICULTURE?

<table>
<thead>
<tr>
<th>Country</th>
<th>Example and nature of subsidy</th>
</tr>
</thead>
</table>
| India | • Organic agriculture, subsidy for organic and bio fertilizer and pesticide manufacturers under National Project on Organic Farming for capital investments (e.g. compost production units)
 | • Insurance premium subsidy under national crop insurance program
 | • Establishing scientific storage capacity under Integrated Scheme on Agricultural Marketing
 | • Sustainable agriculture investments under National Mission on Sustainable Agriculture (e.g. soil testing labs) |
| China | Private sector subsidize the transition to organic agriculture by input subsidies (nearly 57%) (ADB 2015) |
| ASEAN | GAP certification is fully subsidized by national governments |

- Subsidies are increasingly been targeted to promote sustainable agriculture but the progress is slow and is not sufficient to fully incentivize the transition.
- However, they are still blanket subsidies and leading to leakages and other imperfections affecting the agriculture negatively than benefiting.

ALTERNATIVES TO CURRENT FORM OF SUBSIDIES

- Investment in capacity building of farmers including extension services
- Investment in risk mitigation instruments including irrigation facilities, better crop varieties, risk insurance and weather services
- Targeted subsidies instead of blanket subsidies
- Conditional cash transfers to targeted farmers
CLIMATE IMPACTS CROP PRODUCTION: PADDY IN INDIA

32 MT lost in 1 year! (3.6 billion USD)

Agriculture being primary input provider, such a shock will have rippling effects on the entire economy!

IMPACT ON FARM INCOME: IMPACT OF 2010 DROUGHT ON NPL OF BANKS IN INDIA

- Increase in farm loan defaults (figure on the right).
- Increased burden on government: farm loan waivers to the tune of 14.4 billion US$ in 2008 by GOI, in comparison GOI spent only ~163 million USD on insurance in 2008.

Source: RBI, 2014
MEANS OF BUFFERING IMPACTS AND ISSUES

<table>
<thead>
<tr>
<th>Means</th>
<th>Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better crop varieties</td>
<td>Often costly, spurious seeds, IPR and need to buy every year</td>
</tr>
<tr>
<td>Loan waivers</td>
<td>Costly on national budget, political influence, no-proper scrutiny of loss differentiation, mostly rich gets benefited and corruption</td>
</tr>
<tr>
<td>Expand irrigation facilities</td>
<td>High investment costs, declining rainfall and increasing rainfall variation may not buffer especially for the tail-end farmers</td>
</tr>
<tr>
<td>Livelihood diversification</td>
<td>Poor rural economy with low demand especially during drought and flood times; may promote migration</td>
</tr>
<tr>
<td>Input subsidies</td>
<td>Often rich gets benefited; high cost to the government; not useful when conditions are not congenial for cropping</td>
</tr>
</tbody>
</table>

There is a need for stabilizing financial loss in the event of the failure of the above

Prabhakar, 2016

AGRICULTURE INSURANCE

- In agriculture sector, primarily introduced as a means of buffering economic shocks from natural hazards
- If designed well, insurance can provide several benefits
 - Emphasis on risk mitigation compared to response
 - Provides a cost-effective way of coping financial impacts
 - Covers the residual risks uncovered by other risk mitigation mechanisms.
 - Provides opportunities for public-private partnerships.
 - Helps communities and individuals to quickly renew and restore the livelihood activity.
 - Depending on the way the insurance is designed, the insurance mechanism can address a variety of risks of climatic and non-climatic nature.
- Reduced burden on government

Arnold, 2008; Siamwalla and Valdes, 1986; Swiss Re, 2010
WAYS IN WHICH INSURANCE CAN PROMOTE SUSTAINABLE AGRICULTURE

• Change in the behaviour of farmers: By making adoption of best practices obligatory/accompanying agricultural insurance

• Reduced economic impacts can be redirected to invest in better management practices

• Capacity building farmers who enrolled into insurance by the collaboration between insurance delivery agencies and agriculture extension agencies, farmer cooperatives and self-help groups

• Incentivizing reduced insurance premium prices for the farmers adopting BMPs.

We don’t have evidence for these happening yet!

CURRENT INSURANCE COVERAGE

• In contrast, Asia and Africa have one of the highest agricultural populations in the world

• The rural areas in these regions are reported to have highest poverty and seasonal unemployment where buffering income fluctuations will have significant socio-economic impacts

Source: Global Premiums Iturrioz, 2010
WHY INSURANCE HAS NOT SCALUED UP?

• **High residual risks in agriculture**: Only 35-40% of agriculture is irrigated in Asia; low expansion of drought and flood-tolerant varieties; poor extension systems

• Inefficiencies attributable to *adverse selection* and *moral hazard*

• **Poor availability of data** to assess risks for designing effective risk insurance systems (e.g. weather data and data on crop loss)

• **Willingness to pay**: Economic, cultural and perceptual issues with both people at risk and policy makers

• **Lack of trust** among the insured on insurance providers

• **Poor availability of data** to assess risks for designing effective risk insurance systems (e.g. weather data and data on crop loss)

• **Willingness to pay**: Economic, cultural and perceptual issues with both people at risk and policy makers

• **Lack of trust** among the insured on insurance providers

• Poorly developed re-insurance industry

• And so on...

• **High insurance costs**: Costs to whom and compared to what alternative risk management strategy?

How to overcome these limitations?

ADDRESSING HIGH INSURANCE COSTS

Subsidy on Premium

<table>
<thead>
<tr>
<th>Country</th>
<th>% Premium Subsidy</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>60%</td>
</tr>
<tr>
<td>Japan</td>
<td>49%</td>
</tr>
<tr>
<td>India</td>
<td>30%</td>
</tr>
<tr>
<td>Pakistan</td>
<td>70%</td>
</tr>
<tr>
<td>Philippines</td>
<td>100%*</td>
</tr>
<tr>
<td>ROK</td>
<td>50%</td>
</tr>
</tbody>
</table>

*for subsistence farmers only

FAO 2011

• Most governments address the insurance costs through subsidy on premium. Premium subsidies rose 250 percent over 2007 subsidy levels in the Asia Pacific region.

• **Advantages**
 - Easy to implement
 - High political impact

• **Disadvantages**
 - The real cost of risk is not conveyed to farmer
 - Possibility of high risk seeking behaviour
 - Disproportionately benefits rich farmers
 - Overall insurance costs remain same or even higher
ADDRESSING HIGH INSURANCE COSTS

Technology: Index insurance

Scaling up index insurance for smallholder farmers

- Reduction in transaction costs
- Greater reach to all size of farms (greater coverage)
- Reduces moral hazard and adverse selection problems
- Reduces distress sales due to quick insurance payouts

WILLINGNESS TO PAY

Savings-Linked Insurance (Unit Linked Insurance Plan)

- Cheaper premium
- Poor households can have quick access to finances (overdraft with withdrawal on premium) and hence will not feel deprived of money for long periods of time
- Interest earned on savings can provide additional advantage: Promotes savings
- Help build assets in the long-term while protection against catastrophic risks
- Innovations in savings-linked insurance include designing insurance products based on interest earned on savings could substantially reduce the premium burden on insurance holders
INNOVATIVE SOLUTIONS

• Combining Insurance with Payment of Ecosystem Services
 • Payment of ecosystem services and carbon capture and sequestration proceeds could be linked to insurance premiums and or investments made on risk mitigation options that can generate substantial PES proceeds.
 • E.g. certain types of intensive row-cropping systems and ecological farm scapes can promote ecosystem services such as a clean and well-regulated water supply, biodiversity, natural habitats for conservation and recreation, climate stabilization, and aesthetic and cultural amenities such as vibrant farm scapes etc. (Robertson et al. 2014).

• Combining insurance with social security programs
 • 40% of global population is not protected and 75% are inadequately protected
 • Combining social security and insurance can help extend social protection to under-served populations and can reduce the overall costs of insurance for the vulnerable sections of the population while extending financial inclusion benefits

PAYMENT OF ECOSYSTEM SERVICES & C SEQUESTRATION

• To recognize and reward ecosystem services in various forms.
 • There is a large potential for expanding these tools to wider agricultural areas recognizing the multiple functions of agriculture especially disaster risk reduction.
 • These tools are yet to be applied in conventional agriculture but have successfully been applied in scenarios where natural ecosystems and agriculture are in close interaction such as in agro-ecological farming systems (e.g. Sato Yama).

Zhang et al., 2007
CARBON SEQUESTRATION POTENTIAL OF ASIAN SOILS AND ACCRUED REVENUE FOR FARMERS FROM CARBON MARKET

- In terms of carbon sequestration in agricultural soils, tropical soils offer limited potential for carbon sequestration but nevertheless helps to build carbon to levels possible in the given agro-climatic conditions.
- Soils in Asia are highly depleted of soil carbon due to intensive cultivation practices. Measures such as zero and reduced tillage can provide such opportunity.
- Carbon credits are on continuous decline since 2010 but may resume during the implementation phase of the Paris Agreement.

What are the costs?
What about the spill over effects?

- Global carbon sequestration potential of agricultural soils = 0.4-1.2 Gt/yr (Lal, 2004)
- Global technical potential of CO2 until 2030 = 5500-6000 Mt CO2/yr (Smith et al., 2008 i.e. IPCC)
- Highest potential = 0.8-1.0 Gt/yr (Hansen et al, 2013)
- Asian soils (rough estimate) = 0.08-0.1 Gt/yr
- Total revenue at current carbon exchange prices = 2.5-3.0 USD/ha/farmer/yr

METRICS FOR PROMOTING SUSTAINABLE AGRICULTURE

- Large number of sustainable agriculture indicators have been identified in the literature
- There are no comprehensive approaches that have systematically assessed these indicators for on-the ground decision making
- Major gaps in the proposed indicators are low emphasis on economic and social impacts, biodiversity and ecosystem services and disproportionately stress physical elements of agricultural system
HOW TO PRIORITIZE AND DEPLOY SUSTAINABLE AGRICULTURE INDICATORS?

LOCAL ADAPTATION INDEX (LAIN) APPROACH

Prioritized Indicators (Bangladesh)

- Vulnerability
 - % farms with soil degradation (exposure)
 - % soil cover (exposure)
 - Period of fresh water availability (exposure)
 - Area under high water use crops (sensitivity)
 - Area under arable farming (sensitivity)
 - Soil organic matter content (capacity)
 - Area under reduced tillage (capacity)

- Readiness
 - % of households having access to credit (economic)
 - % of households having access to markets (economic)

Quantified Indicators (Bangladesh)

- Value
- Range (Min Max)
- Score
- Weight

Val.
- % Soil degradation
- % soil cover
- Period of water availability (days)
- Water int. crops (ha)
- Arable farming (ha)
- Soil OM content (%)
- Reduced tillage (ha)

Read.
- Households credit access (%)
- Farmers access to markets (%)

Lain =
\[
\left(\sum_{i=1}^{n} \frac{\text{Index} - \text{Mean}_{i}(\text{Index}) \times \text{Weight}_{i}}{\text{Std}_{i}(\text{Index})} \right) \times \text{Max Score}_{i} \times \text{Weight}_{i}
\]

Integrated as Lain
LAIN IN THE GANGETIC BASIN

PRIORITIZING THROUGH MCA TECHNIQUES: BANGLADESH-DROUGHT, MALE

- Reduce drought sensitivity and improve adaptive capacity

<table>
<thead>
<tr>
<th>Goal</th>
<th>Criteria</th>
<th>Indicators</th>
<th>Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost effectiveness</td>
<td>Relate to Economic</td>
<td>Choice of crops</td>
<td>Ground water pumping</td>
</tr>
<tr>
<td></td>
<td>Wellbeing</td>
<td>availability</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Food security</td>
<td>Digging ponds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in yield</td>
<td>Crop rotation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Increase in income</td>
<td></td>
</tr>
</tbody>
</table>

Prabhasak, 2014
CERTIFICATION: PROS AND CONS

- Ability of producers to access to markets where such standards are enforced
- Price premiums and higher income
- Capacity-building of producers and stakeholders in the supply chain in aspects of food quality
- Reduction in food loss due to improved capacity and support services
- Increased consumer confidence and a better ability to create brand equity among the consumers and markets.
- Could alienate small and marginal producers who cannot afford or technically comply with formal certification schemes.

CURRENT STATE OF CERTIFICATION

<table>
<thead>
<tr>
<th>Country</th>
<th>Government regulations/standards</th>
<th>Government certification</th>
<th>Affiliation basis for national standards*</th>
<th>Other certifications available *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>None</td>
<td>None</td>
<td>Mostly by foreign certifiers</td>
<td>SGS certification</td>
</tr>
<tr>
<td>India</td>
<td>Indian national standards for organic products (2001–05)</td>
<td>APEDA (National Programme for Organic Production, National Project on Organic Farming)</td>
<td>IFOAM and EU</td>
<td>EU, NOP, CODEX, DAP, Germany</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Indonesia National Standard number 01-6729-2002</td>
<td>Badan Standardisasi Nasional (BSN) (the national standard agency), Otoritas Kompeten Pangan Organik (Organic Food Competent Authority, OKPO)</td>
<td>CODEX. Also refers to IFOAM, JAS, EU</td>
<td>IFOAM, JAS, EU</td>
</tr>
<tr>
<td>Japan</td>
<td>Japan Agricultural Standards of Organic Agricultural Products</td>
<td>Japan Agricultural Standards (JAS)</td>
<td>CODEX</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>Skim Organik Malaysia SOM (national organic standard, MS 1529:2001)</td>
<td>SOM, Department of Agriculture Sarawak</td>
<td>IFOAM and CODEX</td>
<td>EU, NOP, JAS</td>
</tr>
<tr>
<td>Pakistan</td>
<td>None</td>
<td>None</td>
<td>Mostly by foreign certifiers</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>Philippine National Standards for Crop and Livestock Production</td>
<td>Organic Certification Center of the Philippines, Bureau of Agriculture, Fisheries and Product Standards (BAFS)</td>
<td>Based on IFOAM and EU</td>
<td></td>
</tr>
<tr>
<td>Republic of Korea</td>
<td>Yes</td>
<td>National Agricultural Products Quality Management Service (NAPQS), Korean Food and Drug Administration (Transaction Certificate for Processed Organic Products)</td>
<td>CODEX</td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>None</td>
<td>None</td>
<td>Mostly by foreign certifiers</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>National Organic Standard Guideline for Crop Production</td>
<td>Organic Agriculture Certification Thailand (ACT)</td>
<td>IFOAM</td>
<td>EU, JAS, CODEX, NOP</td>
</tr>
<tr>
<td>Vietnam</td>
<td>Organic Agricultural Production Standards</td>
<td>Ministry of Agriculture and Rural Development</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

Source: Prabhakar et al., 2016
There is a poor capacity for organic certification in most developing countries in Asia.

Legend:
Certification agencies: 1=10-20; 2=20-30; 3=30-40; 4=40-50; 5=>50.

Organic agriculture (OA) as percentage of total agriculture: 1=0-0.4; 2=0.4-0.8; 3=0.8-1.2; 4=1.2-1.6; 5=>1.6.

Per capita organic demand (million US$): 1=0-5; 2=5-10; 3=10-15; 4=15-20; 5=>20.

Issues and Solutions for Certification

<table>
<thead>
<tr>
<th>Issues</th>
<th>Solutions and limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>High cost of certification for producers</td>
<td>Nationally funded programs, participatory Guarantee System, capacity building of cooperatives</td>
</tr>
<tr>
<td>Fragmented certification systems</td>
<td>Unified certification system based on the common principles underlying the existing certifications (e.g. EU Organic farming Logo); however, there is no consensus on the possibility of implementing such unified certification system</td>
</tr>
<tr>
<td>Monitoring and evaluation costs</td>
<td>Participatory Guarantee System (India, Vietnam etc), automation of certain verification processes; visitation by certification officer is a major bottleneck</td>
</tr>
<tr>
<td>Transition time from conventional to organic</td>
<td>Support services (e.g. extension and other information based support services) and subsidies on organic inputs</td>
</tr>
</tbody>
</table>

Moving focus from organic to other forms of sustainable agriculture: Fairtrade is helping by organizing small-scale farmers into groups, building their capacity to produce quality goods and linking them with the markets through the marketing of Fairtrade certified produce (Fairtrade, 2016). Through this initiative, in 2015, Fairtrade was able to link nearly 40,000 smallholder farmers in the Pacific region alone.
REMOVING BARRIERS: IMPROVING THE MARKET ACCESS

<table>
<thead>
<tr>
<th>Country</th>
<th>Market access examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambodia</td>
<td>Farmer–supermarket linkages, community cooperatives, training and capacity-building</td>
</tr>
<tr>
<td>China</td>
<td>Farmer–supermarket linkages, farmer associations, training and capacity-building</td>
</tr>
<tr>
<td>India</td>
<td>Contract farming, self-help groups, cooperatives, farmers markets, subsidies for investment in market infrastructure, information technology</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Farmer field schools, participatory market chain approaches, contracts between farmers and market chain partners, capacity-building of farmers, farmer groups and farmer-private sector partnerships</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>Farmer–private sector linkages, CODEX marketing standards, infrastructure improvement, Fairtrade certification schemes (also applicable in many other Pacific countries)</td>
</tr>
<tr>
<td>Philippines</td>
<td>Developing enterprises around special food produce, capacity-building, technological infusion, farmers cooperatives, farmer–trader linkages</td>
</tr>
<tr>
<td>Samoa</td>
<td>Fairtrade certification, capacity-building, market linkages</td>
</tr>
<tr>
<td>Thailand</td>
<td>Farmer to trader linkages, private sector linkages, and leadership of lead farmers</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- Several policy instruments have been tried for sustaining agriculture in Asia
- Most of these policies can be used for promoting sustainable agriculture if they are targeted well
- There is still a need for systematic studies that compare most policies for their efficacy in promoting sustainable agriculture in country-specific and farmer-specific contexts to understand who lose and who win.
- There is a need to design and implement policies to promote other forms of sustainable agriculture (e.g. community supported agriculture, biodynamic farming etc) and ASEAN is doing well in this regard.
THANK YOU!

SIVAPURAM.PRABHAKAR@GMAIL.COM
PRABHAKAR@IGES.OR.JP